
DSLs and Code 

Generation
Scott Stanchfield

http://javadude.com



Data Entry

 Programmers

 Code

 Binary

 CSV

 XML – “human-readable”

 yeah… right…

 JSON

 Non-Programmers / Subject-Matter Experts

 Say “ewwwwwww”

 Spreadsheets -> CSV

 “Bad” characters (<-- like those quotes)

 XML, JSON

 Easy to make syntax mistakes



Domain-Specific Languages

(DSLs)

 A “little language”

 Simpler data entry

 Less code (depends)

 More terse

 Specific to task

 Terms possibly more familiar to SME (than code)

 Better validation



Internal DSLs

(Uses programming language directly)

 Fluent API

// Java example

new Robot()

.turnLeft(90)

.move(100)

.shoot();

 More Complex

// Groovy example

Email.make {

to “Luke"

from “Han"

subject “Don’t Get Cocky, Kid"

body “…”

send

}



External DSLs

(Input parsed by language)

// GraphViz dot example

digraph map {

study -> hall [label = "S"]

kitchen -> hall [label = "E"]

hall -> porch [label = "S"]

hall -> bedroom [label = "E"]

hall -> study [label = "N"]

hall -> kitchen [label = "W"]

bedroom -> hall [label = "W"]

porch -> hall [label = "N"]

}

// Custom DSL example

carryable item key "It is a shiny brass key"

carryable item letter "It reads You win!"

fixed item safe 
"It is a very heavy locked box. There is a keyhole 

on it" 

opens with key locked closed

contains letter

room bedroom "This is where you sleep"

contains key

exit west hall

start in porch



Today’s Examples

Text Adventure Game

 Two DSLs

 Commands (ANTLR)

 Data (xText)

ANother Tool for Language Recognition

 Run actions when input matched

xText

 Model classes (Build)

 Generated IDE (Build)

 Read Model Instance (Runtime)

Object Model Generation

 One DSL

 Object Model (xText)

xText

 Model classes (Build)

 Generated IDE (Build)


