
DSLs and Code 

Generation
Scott Stanchfield

http://javadude.com



Data Entry

 Programmers

 Code

 Binary

 CSV

 XML – “human-readable”

 yeah… right…

 JSON

 Non-Programmers / Subject-Matter Experts

 Say “ewwwwwww”

 Spreadsheets -> CSV

 “Bad” characters (<-- like those quotes)

 XML, JSON

 Easy to make syntax mistakes



Domain-Specific Languages

(DSLs)

 A “little language”

 Simpler data entry

 Less code (depends)

 More terse

 Specific to task

 Terms possibly more familiar to SME (than code)

 Better validation



Internal DSLs

(Uses programming language directly)

 Fluent API

// Java example

new Robot()

.turnLeft(90)

.move(100)

.shoot();

 More Complex

// Groovy example

Email.make {

to “Luke"

from “Han"

subject “Don’t Get Cocky, Kid"

body “…”

send

}



External DSLs

(Input parsed by language)

// GraphViz dot example

digraph map {

study -> hall [label = "S"]

kitchen -> hall [label = "E"]

hall -> porch [label = "S"]

hall -> bedroom [label = "E"]

hall -> study [label = "N"]

hall -> kitchen [label = "W"]

bedroom -> hall [label = "W"]

porch -> hall [label = "N"]

}

// Custom DSL example

carryable item key "It is a shiny brass key"

carryable item letter "It reads You win!"

fixed item safe 
"It is a very heavy locked box. There is a keyhole 

on it" 

opens with key locked closed

contains letter

room bedroom "This is where you sleep"

contains key

exit west hall

start in porch



Today’s Examples

Text Adventure Game

 Two DSLs

 Commands (ANTLR)

 Data (xText)

ANother Tool for Language Recognition

 Run actions when input matched

xText

 Model classes (Build)

 Generated IDE (Build)

 Read Model Instance (Runtime)

Object Model Generation

 One DSL

 Object Model (xText)

xText

 Model classes (Build)

 Generated IDE (Build)


